

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [486]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A NOVEL TECHNIQUE FOR SCALABLE, EFFICIENT DEPLOYMENT OF

SOFTWARE IN CLOUD COMPUTING ENVIRONMENTS
S.Venkataramana*, Dr. P.V.G.D.Prasad Reddy, Dr S.KrishnaRao

*Research Scholar, Dept. of Computer Science & Systems Engineering,

Andhra University, Visakhapatnam, Andhra Pradesh, India

Dept. of CS&SE, Andhra University, Visakhapatnam, Andhra Pradesh, India

Dept. of IT, Sir CRR Engineering College, Eluru, Andhra Pradesh, India

DOI: 10.5281/zenodo.55615

ABSTRACT
In modern computing environments (Clouds, Data Centers, multi-tiered applications, etc.) deployment of software

encounters the obstacle of handling heterogeneity. Real-world solutions are built by combining various technologies,

programming languages, platforms, Operating Systems, and applications. The deployment mechanism not only has

to adapt to a changing environment but it has to also respond gracefully to unanticipated demand surges by scaling-

out and scaling-in to meet performance requirements. For these reasons, deployment of software in heterogeneous

environment is a challenging task. Efficient resource provisioning plays a key role in ensuring that global service

providers (like Google) adequately accomplish their performance obligations to customers while maximizing the

utilization of the underlying environment. In this paper, we propose a novel deployment mechanism which can

efficiently provision, de-provision and maintain services in heterogeneous environments. Our approach creates

software packages by embedding parameter values within binaries in a way which is compatible with most target

environments allowing for seamless provisioning, tracking, maintenance and de-provisioning of services in a robust

manner without requiring specialized agents deployed in target environments. We have validated our mechanism by

constructing prototypes and the results demonstrated that it is possible to scale-out and scale-in rapidly in response

to the demand fluctuations by automating deployment mechanism in a heterogeneous environment.

KEYWORDS: Radia, Heterogeneous Environments, seamless provisioning, JuJu, OpenStack, SmartFrog,

Aggregation, Generic Provisioning Function, AggMech.

INTRODUCTION
Cloud computing has grown up increasingly pervasive, providing end-users with temporary access to scalable

computational resources. At conceptual level, cloud computing is a good fit for technical-computing users. The

scientists are ready to take advantage of cloud computing resources to execute scientific workflows [1], [2], [3].

However, the current cloud computing market developed gradually by the Software Industry, it is not a good match

for the needs of technical-computing end-users from the especially high-performance computing (HPC) community.

Providers such as Rackspace & Amazon provide users with access to a homogeneous set of commodity hardware; in

details of the hardware obscured through virtualization technology and little or no control of locality (accept

sometimes by geographic region). By contrary to, technical-computing end-users want to obtain access a

heterogeneous set of resources, such as different network interconnects, accelerators and Machine Architectures.

WHY A HETEROGENEOUS ENVIRONMENT IN CLOUD?
Data centers and Computational centers are usually limited by power density and efficiency, and compute density.

General-purpose microprocessors and server manufacturers are working to improve efficiency of power;

heterogeneous processing resources should provide an order of magnitude or more improvement using these metrics.

http://www.ijesrt.com/

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [487]

The improvements are seems to be persistent, because specialized devices can be optimized for specific kinds of

computations, and for efficiency. There are many examples for problems well suited to specific architectures.

Examples of such architectures include network packet processors, graphical processing units, digital signal

processors, symmetrical multiprocessors (SMPs), and conventional CPUs. Today’s cloud Environment, with a few

notable exceptions (e.g. R Systems, SGI Cyclone, Amazon Cluster GPUs), generally focuses on hardware

commodity, with no control over target architectures and a fixed number of memory/CPU sizes. If cloud users are

able to take the advantage of the performance and efficiency of heterogeneous computing, the cloud infrastructure

environment software must recognize and handle this heterogeneity. In the past, grid computing and batch

scheduling have been commonly used for large scale computation. Cloud computing presents a different resource

allocation paradigm than either grids or batch schedulers. In particular, Amazon EC2 [5] is equipped to handle many

smaller compute resource allocations, rather than a few, large requests as is normally the case with grid computing.

The introduction of heterogeneity allows clouds to be competitive with traditional distributed computing systems,

which often consist of various types of architectures as well. When combined with economies of scale, dynamic

provisioning and comparatively lower capital expenditures, the benefits of heterogeneous clouds are numerous.

Cloud computing allows individual users to have administrative access to a dedicated virtual machine instance. The

capability to separate users is superior compared to a batch 2011 IEEE International Conference on Cluster

Computing 978-0-7695-4516-5/11 $26.00 © 2011 IEEE DOI 10.1109/CLUSTER.2011.49 378 scheduling

approach[8], where it is common for multiple jobs to share a single operating system. The advantages of this are

apparent from the perspectives of security as well as flexibility for users, offering a variety of operating systems.

In a large-scale datacenter environment, different workloads are paralleling serving the end-user needs. Most of the

workloads deployed as per compliance check, supportability on different infrastructure to serve the end-user needs.

Managing the workloads by the administrator for supportability and maintainability is a herculean task, since the

administrator need to understand entire heterogeneous environment [9]. Most of the customers go with

heterogeneous datacenters to overcome vendor locking and at the same time to ensure workloads seamlessly

providing required services to the end-users. For heterogeneous resources it will allow for deploy various

workloads on different environments to avoid single point of failure and reliability for the resources.

PRIOR SOLUTIONS
Multiple organizations are developing and prototyping the client automation tools. Among these tools, few of them

are popular based on customers base, below are the high level details below:

JuJu enables provisioning of entire environments in the cloud with few commands on public clouds like popular

public cloud services Amazon, Rackspace, to private clouds built on OpenStack, or raw bare metal via Messaging as

a Service [4. The enabling components are its models called charms that are developed for multiple target

computing environments and subcomponents.

Radia is a client server solution to provision and maintain software on a limited set of popular OS platforms that can

be provisioned using installation wizard, logon script, and management portal. Radia Server stores data for all

applications including desired state, and maintains the policy. Basic functions (Policy Resolution, Desired State

Resolution, and Data Download) are performed by Radia client which is target platform specific. Radia utilizes

multiple level caches for optimization.

SmartFrog is Java-based software framework for configuring, deploying and managing distributed software

systems that might contain multiple components that need to interoperate. SmartFrog consists of a language for

defining configurations, providing powerful system modeling capabilities and an expressive notation for describing

system configurations, a secure, distributed runtime system for deploying software components and managing

running software systems, a library of SmartFrog components that implement the SmartFrog component model and

provide a wide range of services and functionality.

Chef is a systems and cloud infrastructure automation framework to deploy servers and applications to any physical,

virtual, or cloud locations. The chef-client relies on abstract definitions (known as cookbooks and recipes) that are

written in Ruby and are managed like source code. Chef uses chef-client to execute deployments independently.

http://www.ijesrt.com/
http://www.ubuntu.com/cloud/public-cloud
http://www.ubuntu.com/cloud/private-cloud/openstack
http://www.ubuntu.com/cloud/orchestration/deployment

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [488]

PROPOSED SOLUTION
The above mentioned tools try to resolve the deployment of software across heterogeneous hardware. The

proposed solution solve the below mentioned problems:

1. The proposed solution resolves software deployment mechanism for heterogeneous environments which restricts

heterogeneity to software packaging while retaining deployment requests and deployment engines abstract

(heterogeneity agnostic) and automates the software packaging deployment.

2. Further the proposed solution optimizes the mechanism of the environments with specific constraints and physical

hardware and slow network.

The proposed solution packages software components in a unique way by first creating a common binary for the

varied environments and then uses a context sensitive installation script to replace the variants for each different

environment with specific values specific to the target environment. This installation script is capable of retrieving

parameters from varied locations within an installed environment. A regressive method to eliminate the differences

between the diverse environments as explained in steps a, b, and c below helps to make the provisioning mechanism

fully-automatic [12].

Existing provisioning tools could be described by the following function:

 Tsconf = Dr (SM1, SM2, … SMn)

Input to provisioning function package in the form of consumable by provisioning system results in fully functional

software component installed on target system. Software component would typically consist of installation binary and

installation /configuration instruction to configure software.

METHODOLOGY
The proposed methodology tries to automate the software deployment in a mathematical approach.

The function defined above considered as

Tsconf = Target System Configuration;

Dr = Deployment Routine

SMn = Software Model Components.

Below is the mathematical function defined for automating software.

1. Initialize the Tsconf and a temporary Tempsconf variables.

2. Find the cumulative of base software model component and cumulative of Layered Architecture and

configuration update model data.

3. Compute the cumulative of the I..n software model components and assign to Tsconf

Tsconf = Dr (Cumulative (Smbase(SM1)) + Cm (SChierarichal (SM1) + Cumulative (SC)+ …

+Depenv(CfgUpd))

Tsconf Target System Configuration

Dr Deployment Routine

Cm Cumulative mechanism for cumulative generic interface calls

Depenv Dependency environment

Smbase Base Software Component

SChierarichal Hierarchal Software Component

SCi Software Component

CfgUpd Configuration update

Unified mechanism to make generic interface calls to enable aggregation of various heterogeneous software

components which includes software libraries and configuration script. Generic interface is possible through

elimination of parameters from provisioning function call as some of potential parameters would be encapsulated

within binary components, common environmental parameters like hostname and IP would be stored in predefined

standard location, and parameters that configure integration between components when not encapsulated into binary

would use local relative references whenever possible.

http://www.ijesrt.com/

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [489]

Designer can create or generate a trivial provisioning function Dr (installation script with single parameter which

uniquely identifies application like a customer name) while all other localization parameters would be found in a

standard location on the target system defined by Cm function (embodiment could be a property text file). The

deployment function would operate on the base Software Component i.e., Smbase, which is derived from manually

installed software component SCi files to specific location with configuration files embedded or replaced with stubs.

The deployment function could also operate on hierarchal Software Component i.e., SChierarichal, which is

comprised of multiple software components pre-combined into single Software package, so there is no need to pass

parameters that integrate them. One of the Software components could be a base component which would place Cm

parameters into standard location, for installing OS and save parameters in the standard location. The deployment

function could also operate contains environment configuration changes Depenv is a representative for OS .reg file

that would self-extract configuration parameters to Windows registry to complete deployment of target operating

environment.

EXPERIMENTAL RESULTS
Overall, proposed method allows constructing a complete target environment of any complexity by utilizing generic

provisioning function without need to pass environment parameters in traditional approach. This enables to

configure software components between heterogeneous systems in a cloud environment without pre-validation of

communication specifications between the nodes.

For creating a single installation routine of heterogeneous environments which are capable of installing the entire

provisioning stack by partitioning each software component of the stack into binary and a context-sensitive

installation script that is capable of extracting Cm parameters for location within an install environment.

The deployment method is in a combination of manual deployment method and model-based provisioning method.

Manual deployment is used in design phase to create Software binary subcomponent. In runtime phase proposed

used model is based on provisioning to deploy various software components to heterogeneous target environments.

This model is a minimalistic model predicated on intrinsic native properties of software components: installability,

executability and localizability.

Standardizing on our deployment method that would enable context sensitive patching without requiring a

deployment agent installed on a managed device. A generic scheduled upgrade script could pull binaries of newer

versions of software components installed while preserving local configuration parameters. Agentless provisioning

would not require remotely accessible identification and agent maintenance.

http://www.ijesrt.com/

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [490]

This is a Binary image
output of a typical
installation of a
software, post
installation procedure
applied successfully,
with placeholders for
actual values to be
inserted by the script
for ‘machine specific’
binary

Standard
Input

parameters

Deployment
script

Software
Libraries
snapshot

Used by

3 types of input parameters

1. Application specific
2. Name of the host
2. Port number

Acts on

Machine
libraries

dependent

The deployment script
replaces placeholders in
template with actual
values to make it machine.
ie., it injects machine
specific values to the
binary template.

Figure-1: Proposed methodology for software deployment

AUTOMATING SOFTWARE PACKAGING
Cumulative mechanism for cumulative generic interface calls, Cm is a method to automate model-based

provisioning by leveraging unified model inputs required for software installation and requirement to package

software component in a specific way. This is possible because of essential properties of commercial software, that

is, it is installable; its installation results in creating files in certain locations on the target system; there are limited

number of standard configurations deployed in specific enterprise environment; an installation input parameter or its

derivative is stored within software image installed on target system in specific location. This enables the following

build engineering process to make repeatable:

1) Identify standard target environment (e.g. Operating system, file system layout and target location for

software)

2) Identify standard configuration (e.g.: installation option selections, standard binary location and tuning

parameters)

3) Identify naming to identify instance (e.g. unique application identifier or application short name)

4) Identify installation target (e.g. hostname which could be derivative of short name, FQDN)

5) Identify locator function of target device (IP, network interface name, default gateway)

6) Identify names of personal to be supporting software component(to generate OS user IDs and groups)

7) Identify addressable identification of other software components to interoperate with (remote hostname

or IP).

Installation instances have the same target binary with exception of these configuration parameters or its derivatives

(for example, encryption keys/certificates). Thus, using standard installation process, since each software product is

installable, an engineer could produce binary package for software provided configuration and target environment

are standardized. Then simple script could be developed to replace configuration values within binary based on this

standard set of input parameters.

http://www.ijesrt.com/

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [491]

01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010

+ Deployment Script

Binary of a single Software model

01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010

01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010

01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010

01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010
01000100111100011001101110001001010

Deployment Script+

Binary of cummulative Software Package
model

Deployment script for deploying the
Cummulative Software package

 Packages

Figure 2: The resultant components of the deployment mechanism

CONCLUSION
Frequently deployment of software reaches beyond one or more software components onto provisioning of a

complete functional compute. It is possible to deploy a complete compute including all OS configurations, software

components and applications via cumulative as described above. However, this cumulative might not be practical to

accomplish due to network limitations when a prolonged bi-directional communication is not feasible, due to

variability in physical hardware platforms requiring specialized software components (drivers), or due to frequent

changes in target operating environments.

The network limitation is overcome by cumulative all components into a single self-installable media that is

installed or mounted in the way that is not affected by network limitation. Creation of this media is automated by the

design described in the second embodiment.

The variability limitation is overcome by cumulative bundle via dynamic context-sensitive replacement, removal or

injection of software components containing required drivers. These software components are packaged via the

design technique described above. Changes in target operating environment are overcome by dynamic context-

sensitive replacement, removal or injection of software components required for new target environment and by

replacing binary portion of software components with versions compatible with new target environment. When

source code is available binaries are dynamically compiled into version compatible with new target environments

just in time for provisioning.

REFERENCES

[1] K. Keahey, “Cloud computing for science,” in Proceedings of the 21st International Conference on

Scientific and Statistical Database Management, New Orleans, LA, June 2009.

[2] E. Deelman, G. Singh, M. Livny, J. B. Berriman, and J. Good, “The cost of doing science on the cloud: the

montage example,” in Supercomputing Conference, 2008.

[3] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and W. Karl, “Scientific cloud computing: Early

definition and experience,” in High Performance Computing and Communications, 2008. HPCC ’08. 10th

IEEE International Conference on, sept. 2008, pp. 825 –830.

[4] “OpenStack.” [Online]. Available: http://www.openstack.org.

[5] “Amazon elastic compute cloud (amazon EC2).” [Online]. Available: http://aws.amazon.com/ec2/

http://www.ijesrt.com/
http://www.openstack.org/
http://aws.amazon.com/ec2/

[Venkataramana* et al., 5(6): June, 2016] ISSN: 2277-9655

IC™ Value: 3.00 Impact Factor: 4.116

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [492]

[6] Z Sanaie, s Abolfazli, A Gani., Heterogeneity in mobile cloud computing: taxonomy and open challenges-

Surveys & Tutorials,2014- ieeeexplore.ieee.org.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A Berkeley view of cloud computing,” EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online].

Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS- 2009-28.html

[8] Steve Crago, Kyle Dunn, Patrick Eads, Lorin Hochsteiny, Dong-In Kang, Mikyung Kang, Devendra

Modium, Karandeep Singh, Jinwoo Suh, John Paul Walters., “ Heterogeneous Cloud Computing”

Conference: 2011 IEEE International Conference on Cluster Computing (CLUSTER), Austin, TX, USA,

September 26-30, 2011

[9] BP Rimal, Echoi, I Lumb., A Taxonomy and survey of cloud computing systems., INC, IMS and IDC,

2009. NCM’09- ieeeexplore.ieee.org.

[10] A Klen, C Manweiler, J Schneider., Access Schemes for mobuile cloud computing, 2010 Eleventh...,2010-

ieeeexplore.ieee.org.

[11] VC Emeakaroha, I Brandic, M Maurer., SKA-Aware application deployment and resource allocation in

clouds., Computer Software...,2011- ieeeexplore.ieee.org.

[12] S Yeo, HHS Lee., Using mathematical modeling in provisioning a heterogeneous cloud computing

environment., computer,2011-ieeeexplore.ieee.org, Vol:44, Issue: 8, 2011, pp.55-62,ISSN:0018-

9162,DOI:10.1109/MC.2011.96.

[13] H Takabi, JBD Joshi, GJ Ahn., Security and Privacy challenges in cloud computing environments., IEEE

Security & Privacy, 2010-computer.org.

http://www.ijesrt.com/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-%202009-28.html

